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Sub-Pixel Mapping Based on a MAP Model With
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Abstract—Sub-pixel mapping is technique used to obtain the
spatial distribution of different classes at the sub-pixel scale by
transforming fraction images to a classification map with a higher
resolution. Traditional sub-pixel mapping algorithms only utilize a
low-resolution image, the information of which is not enough to ob-
tain a high-resolution land-cover map. The accuracy of sub-pixel
mapping can be improved by incorporating auxiliary datasets,
such as multiple shifted images in the same area, to provide more
sub-pixel land-cover information. In this paper, a sub-pixel map-
ping framework based on a maximum a posteriori (MAP) model
is proposed to utilize the complementary information of multiple
shifted images. In the proposed framework, the sub-pixel mapping
problem is transformed to a regularization problem, and the MAP
model is used to regularize the sub-pixel mapping problem to be
well-posed by adding some prior information, such as a Laplacian
model. The proposed algorithm was compared with a traditional
sub-pixel mapping algorithm based on a single image, and an-
other multiple shifted images based sub-pixel mapping method,
using both synthetic and real hyperspectral images. Experimental
results demonstrated that the proposed approach outperforms the
traditional sub-pixel mapping algorithms, and hence provides an
effective option to improve the accuracy of sub-pixel mapping for
hyperspectral imagery.

Index Terms—Hyperspectral image, MAP, multiple shifted im-
ages, resolution enhancement, sub-pixel mapping, super-resolution
mapping.

I. INTRODUCTION

ARD classification, an important technique in image pro-

cessing, assigns every pixel to a single class; however, it
is inaccurate in hyperspectral images with a coarse resolution,
due to the mixed pixel problem [1]. Spectral unmixing tech-
niques are introduced to obtain the abundance of each class in
the mixed pixel by yielding a number of fraction images equal
to the number of land-cover classes [2]. However, the sub-pixel
spatial attribution of the different classes in a pixel cannot be
obtained by spectral unmixing, and the sub-pixel information
may be lost. To solve the problem, sub-pixel mapping was in-
troduced by Atkinson [3], which divides a pixel into sub-pixels
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and assigns each new smaller sub-pixel to a land-cover class in
order to obtain a hard classification map with higher resolution.

Many sub-pixel mapping algorithms have been proposed
based on spatial dependence [3], which refers to the tendency
for spatially proximate observations of a given property to be
more alike than more distant observations. For example, Tatem
et al. built an energy function and applied a Hopfield neural
network [4]-[7] to solve the problem. Another artificial neural
network, the BP (back-propagation) neural network, has been
used to obtain the sub-pixel mapping result [8], [9]. Verhoeye
et al. [10] transformed the issue of sub-pixel mapping to an
optimization problem, using a linear optimization technique. To
satisfy the demand of spatial dependence, a simple but effective
method based on sub-pixel/pixel spatial attraction models was
proposed by Mertens et al. [11]. Atkinson ef al. presented a
pixel swapping algorithm [12] to exchange sub-pixels to obtain
an optimal result. More recently, genetic algorithms [13],
artificial immune systems [14], Markov random fields [15],
[16], and multi-layer perceptron neural network [17] have been
utilized for sub-pixel mapping.

Most of the traditional methods only utilize the soft-classified
proportion of the data of a single image at the pixel level, and
are based on the spatial dependence assumption [18]. In fact,
sub-pixel mapping can be formulated as an inverse problem that
reconstructs a fine spatial resolution map of land-cover class
labels from a set of class fractions provided by a low-resolu-
tion image [19]. Consequently, sub-pixel mapping is also an ill-
posed problem that transforms a low-resolution fraction image
to a high-resolution classification map, and traditional methods
based on single images have a limit to the detail and accuracy
of the resulting thematic map. Therefore, additional supplemen-
tary datasets should be used. Many types of auxiliary datasets
are available, such as light detection and ranging (LIDAR) [20],
fused image [18], and panchromatic imagery [21]. However,
these suitable datasets are often hard to acquire. Another pos-
sible auxiliary dataset comprises sub-pixel shifted images gen-
erated by camera movements in the same area of land surface,
which may be easily obtained from multi-temporal or multi-
angle images with a sub-pixel shift. Multiple shifted fraction
maps derived from these images can therefore provide addi-
tional land-cover information at the sub-pixel scale, which can,
theoretically, be used to improve the accuracy of super-resolu-
tion mapping [19].

In this paper, to utilize these multiple shifted fraction im-
ages synchronously to improve the sub-pixel mapping accuracy,
a sub-pixel mapping framework based on a maximum a pos-
teriori (MAP) model with multiple shifted hyperspectral im-
ages, namely MMSSM, is proposed. In the proposed frame-
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Fig. 1. Image of 3 % 3 coarse pixels and the possible distributions (scale = 4, 3 classes). (a) Fraction image. (b) Possible distribution 1. (c) Possible distribution 2.

work, the MAP model, due to the advantages of expansibility
and the ease of adding prior information, is utilized to inte-
grate the complementary information in multiple images with
a sub-pixel shift. The MAP model has the ability to regularize
the ill-posed problem and has also been successfully used in
the field of multiple-frame super-resolution (SR) reconstruc-
tion to produce a high-resolution (HR) image from a sequence
of low-resolution (LR) images of the same scene [22]-[26]. In
MMSSM, the MAP method, as a basic framework, is utilized to
reconstruct a classification map with higher resolution from the
multiple fraction images with a lower resolution. In the MAP
framework, three prior models (Laplacian [27], total variation
[TV] [28], and bilateral total variation [BTV] [29]), are used
to regularize the sub-pixel mapping problem, in order to im-
prove the performance of MMSSM for sub-pixel mapping. The
proposed method was tested using three synthetic hyperspectral
images and one real hyperspectral image, and the experimental
results demonstrated that the proposed approach obtains a better
result by incorporating the information from multiple images.

The rest of this paper is organized as follows: Section II gives
a detailed description of the sub-pixel mapping problem. The
proposed sub-pixel mapping framework based on a MAP model
with multiple shifted hyperspectral images is described in de-
tail in Section III. Section IV gives the experimental results
and analysis using different images. The conclusion is drawn
in Section V.

II. THE SUB-PIXEL MAPPING PROBLEM

A. The Sub-Pixel Mapping Problem

The key issue in sub-pixel mapping is how to determine an
optimal sub-pixel distribution of each class in a pixel. Spatial
dependence, as proposed by Atkinson in 1997, inspired from
Tobler’s first law [30], is the universal criterion, which refers
to the tendency for spatially proximate observations of a given
property to be more alike than more distant observations [3]. To
implement a sub-pixel mapping algorithm, fraction images, as
the input, should be obtained by means of spectral unmixing.
An original coarse pixel in the fraction image is divided into
S % S sub-pixels, where S represents the scale factor of the

sub-pixel mapping, and the number of sub-pixels for each land-
cover class can be calculated by the abundance. Fig. 1 shows
a sub-pixel mapping example with three classes. As shown in
Fig. 1(a), a coarse pixel is divided into 16 (4 x 4) sub-pixels,
with the assumption that the scale fraction S is 4, and 0.5 in the
fraction image in red, which means that 8 (16 x 0.5) sub-pixels
belong to land-cover class 1. Fig. 1(b) and (c) describes two
possible distributions of sub-pixels, where the former is superior
to the latter, with higher spatial dependence.

B. The Sub-Pixel Mapping Problem Based on Multiple Shifted
Images

The drawback of traditional sub-pixel mapping methods
is lacking enough information. This is because the sub-pixel
mapping problem can be formulated as an ill-posed problem,
whose number of solutions is not unique, by utilizing fraction
images derived from a single hyperspectral image. Sub-pixel
mapping with multiple shifted images is a feasible way to solve
this problem by introducing more sub-pixel information. The
basic idea is to combine several low-resolution fraction (LRF)
images from the same scene to produce one high-resolution
fraction image. Although these LRF images are derived from
the same scene, they are not identical to each other, because
of the camera movements. Therefore, the different informa-
tion contained in each LRF image can be fused to produce a
high-resolution classification (HRC) image. Fig. 2 illustrates
a simple example with two classes, to explain the process of
how to integrate multiple shifted LRF images to obtain a HRC
image. As shown in Fig. 2, in pixel P1, the fraction of class A
is 0.25, and the scale factor S is 4, in which 4 (4 * 4 % 0.25)
sub-pixels belong to class A. Given another pixel P2 from
another image, which has a sub-pixel shift (the fraction of class
Ais 1, dz = 0.5 pixel, dy = 0.5 pixel) with pixel P1, as shown
in Fig. 2(b), the position of the sub-pixels which belong to class
A can be determined, as all the sub-pixels in pixel P2 belong
to class A, because P2 is the pure pixel, which belonged to
A. According to the above process, based on multiple shifted
LRF images, a more accurate sub-pixel mapping result can be
obtained.
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Fig. 2. The sub-pixel mapping process using multiple shifted images. (a) A mixed pixel P1 with two different land-cover classes. (b) Another pixel P2, which has
a sub-pixel shift with P1. (c) The sub-pixel mapping result using two multiple shifted images.

III. SUB-PIXEL MAPPING FRAMEWORK BASED ON A
MAXIMUM 4 POSTERIORI (MAP) MODEL WITH
MULTIPLE SHIFTED HYPERSPECTRAL IMAGES

To solve the sub-pixel mapping problem with multiple shifted
images, a sub-pixel mapping framework based on a maximum a
posteriori (MAP) model with multiple shifted hyperspectral im-
ages, namely MMSSM, is proposed to convert the LRF image
sequence to a HRC map. In this framework, the sub-pixel map-
ping problem is first transformed to a regularization problem,
and the MAP model is then used to regularize the sub-pixel map-
ping problem to be well-posed by adding some prior informa-
tion, which, in this paper, comprises Laplacian, TV and BTV
prior models.

A. Problem Formulation

In the proposed framework, the sub-pixel mapping problem
with multiple shifted images needs to be defined as follows. Let
the underlying HRC image be denoted in the vector form by
y = f(y',y?---y%), where C is the number of land-cover
classes. In other words, €' is the band number of the original
LRF image, and y° is the high-resolution MAP (HRM) image
for class ¢ € [1,C]. f(-) is the integration function used to
transform the HRM images for all classes to a HRC map. Let-
ting (m,n) denote the height and width of the LRF images,
(M, N) is the height and width of the HR image, and S rep-
resents the scale factor. The LRF image can be represented as
gr = (951950 - ,g,‘;ml*n]T, where £ = 1,2,..., K, with
K being the number of LRF images. Then the mapping model
can be represented as:

gi = DMy‘ + nj, (1)

where My, is the warp matrix with the size of M N x M N, D
is a mn x MN downsampling matrix, and nj represents the
mn X 1 noise vector for class c. Generally, the downsampling
matrix D and the warp matrix M, are assumed to remain the
same between the LRF images.

Referring to the form of (1), the whole mapping model for all
the LRF images can be represented as:

g° = DMy* + n° )

where g¢ = [g§, g5 g%] . M = [My, M, - Mg, n® =
[ni,ng--- nK]T.

In this paper, a MAP strategy is used to regularize the sub-
pixel mapping problem to be well-posed by adding some prior
information. Based on the mapping model of (2), the MAP ap-
proach seeks the ¥4, 4 p to estimate y°, for which the a poste-
riori probability Pr(y¢|g®) is a maximum [31], given the LRF
images g° as (3):

Yirap = argmax {Pr(y“|g)} ©)

Applying Bayes’ rule, (3) becomes:
Pr(g°ly®) Pr(y®) }
Pr(ge)
Since Pr(g®) can be considered as a constant and can be elim-
inated in the optimization of (4), (4) can be rewritten as:

4)

Virap = argmax {

Yarap = argmax {Pr(g|y®) Pr(y®)} )

Assuming the LRF images are independent, we can obtain:

V47 ap = Argmax {H Pr{gily®) Pr(yc)} (6)

k

Using the monotonic logarithm function, (6) can be expressed
as:

.
¥5sap = arg max {Z log Pr (g5 ]y") + log Px~<yc>} )
k=1

where Pr(gf|y©) is the likelihood distribution of the LRF im-
ages, and Pr(y®) is the prior distribution of the image y*°.

Assuming the noise is zero-mean white Gaussian noise with
the same variance, Pr(g$|y“) can be represented as:

g - DMy
- 20_2 ( )

1
Pr(gily®) = —exp (
P1

where p; is a constant and o2 is the variance. The prior Pr(y*)
is thought to be the Gibbs form:

ity = - exo (500 ©)
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where po is a constant, 3 is a control parameter, and U(y®) is
the energy function. Substituting (8) and (9) in (7), the maxi-
mization of this posterior probability distribution can be written
as the following regularization problem:

K
¥5/4p = argmin {Z lgs — DMy°|I> + AU (yC)} (10)
k=1

where A = 202 /3. The first term ||g§ — DM, y°||? is the data
fidelity term. U(y“) acts as the prior term, and A is the regular-
ization parameter which controls the trade-off between the data
fidelity and prior item.

B. Model Solution

After defining the problem, MMSSM solves the model ac-
cording to three steps:

Step 1) Determination of the motion matrix and prior model.
The estimation of motion matrix M in (10) plays an
important role in the process of a MAP model solu-
tion. After a LRF image is selected as the reference
from the LRF image sequences, the sub-pixel shift
between the reference LRF image and the other LRF
images can be estimated by the parametric model
which was used in [32], with the assumption that
the motion of LRF images is a globally translational
motion, and the motions of all points can often be
modeled by a parametric model.

The prior model U(y®) is also critical in the pro-
posed method; it controls the perturbation of the so-
lution, solves the ill-posed problem for the proposed
model, and guarantees a stable HR estimation [33].
In past decades, many prior models have been pro-
posed, such as the Gaussian Markov random fields
(GMRF) model [34], the Huber-MRF model [24],
the weighted-MRF model [32], the Laplacian model
[27], the TV model [28], the BTV model [29], and
sparse directional regularization [35]. In this paper,
the prior model is assumed to be the same for all
classes, and three prior models (Laplacian, TV, and
BTV) are applied to test the performance of the
MAP model in sub-pixel mapping.
1) Laplacian prior model
The Laplacian prior is a 2-D Laplacian matrix
which denotes the high-pass operation with the
constraint that the solution is smooth. The model
is represented as [27]:

U(y°) = 1Qy°ll; (11)

where Q is the Laplacian matrix.

2) TV prior model.
The TV prior is used to effectively preserve the
edge and detailed information in images, and it
can be represented as [28]:

U= VIVl vt a2

where Vy; and Vyj are linear operators de-
noting the horizontal and vertical first-order dif-
ferences. For pixel [Z, j], which is located in row
¢ and column j in image ¥, Vy;, and Vy;, can
be computed as Vy;, = y°[i + 1, j] — ¥°[4, 4],
vy = yeliog + 1) — y°li. ).
3) BTV prior model.

The BTV prior is derived from TV by adding
a bilateral filter. It has the advantages of edge
preservation and being computationally cheap
to implement. The /; form of TV can be re-
garded as a special case of the BTV model. Gen-
erally, the expression of BTV can be written as
[29]:

P P
U(yc) — Z Z a|m\+\l||

I=—P m=0

yc _ Sl me,c

h* v

. a3

where matrices S’h and S;" shift y© by / and m
pixels in the horizontal and vertical directions,
respectively. The scalar weight o, 0 < o < 1,
is applied to give a spatially decaying effect to
the summation of the regularization terms [29].
Step 2) Upsampling of the high-resolution MAP (HRM) re-
sult for every class.
Once the motion matrix and prior model are deter-
mined, the desired HRM image can be updated by
minimizing the following cost function:

.
E(y) =) llgi - DMuy“|> + \U(y)  (14)
k=1

The gradient descent [36] method is utilized to min-
imize the cost function. Differentiating (14) with re-
spect to y©, and setting the result equal to zero, we
have:

K
VE(y®)=-2) MiD (g - DM,y*) + AVU(y") (15)
k=1

where VU (y®) can be calculated as (16)—(18) for
the Laplacian, TV and BTV priors, respectively:

Lap: U(y")=lQy°l = VU(y*)=2Q"Qy"  (16)
TV: Uy =3 IVul + vyl
)
= VU(y)=>_ >V
i g

vy Vyel”

a7)
VIVHEl + Vsl + 8
P P
BTV: Uy)= Y. > alm+l|ye—slsmye||
[=-P m=0
P P
= VU(yF) = Z Z a\mH-\l\ [I _ S;’S;m]
l=—DP m=0

x sign (y°¢ — S}, S0y*) (18)
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Fig. 3. The flowchart of MMSSM.

where V - () is the divergence operator, and /3 is a
small positive parameter which ensures differentia-
bility. S,j” and S define the transposes of ma-
trices S!, and S™ respectively and have a shifting
effect in the opposite directions as S! and S™.
Thus, the desired HRM image is solved by em-
ploying the successive approximations iteration:

(19)

[

o _ oc c
yn-‘,—l =Y. + QLT

where
.
i =2% MID(g; - DM¥5) - AVU(FS)  (20)
k=1

and «;, represents the step size at the nth iteration.

Step 3) Integration of the HRM images to generate the HRC
map.
All the MAP results y© for every class ¢ should
be integrated to obtain the HRC image y. S % .S
sub-pixels in y©, which correspond to a coarse
pixel, should be normalized to [0,1], and the class
of sub-pixel will be z, with the condition that
y* = max{yle=1,2---C}.

The flowchart of the proposed method is shown in Fig. 3.

IV. EXPERIMENTS AND ANALYSIS

In the experiments, three proposed algorithms based on
Laplacian, TV, and BTV prior models in MMSSM, namely,
MMSSM-L, MMSSM-TV, and MMSSM-BTYV, were utilized
to compare with traditional sub-pixel mapping methods with
a single image (the spatial attraction model [SASM] [11]) and
another multiple shifted images based method which utilizing
Hopfield Neural Network (super-resolution mapping with
multiple sub-pixel shifted images [SMMI] [19]), using both
synthetic and real hyperspectral images. Traditional classifi-
cation accuracy assessment was completed by the indices of
percentage correctly classified (PCC), which is identical to

overall accuracy (OA), and the Kappa coefficient (Kappa). For
the sub-pixel mapping problem, to better measure the capacity
of different methods to handle mixed pixels, some other im-
proved indices were used, specifically, PCC’ and Kappa’ [9].
Unlike the traditional indices, only mixed pixels are concerned
in the calculation of PCC’ and Kappa’. In the real hyperspectral
image experiment, only PCC and Kappa were used because the
results of the LRF images were not accurate, due to the limita-
tion of the spectral unmixing techniques currently available.

A. Experiment 1-Synthetic Images

To simulate a series of LRF images with sub-pixel shifts, a
HRC image was obtained by classifying a hyperspectral image
first, then the HRC image was shifted at the pixel scale in the x
and y directions, and the HRC image was degraded to simulate
an LRF image by applying an averaging filter, given the resize
factor. This procedure was performed many times, according to
the number of images used for the proposed algorithm. In this
way, the original classification map can be used as a reference
image to evaluate the sub-pixel mapping methods, and it is pos-
sible to concentrate solely on errors introduced by the sub-pixel
mapping process.

Three synthetic images were used in this experiment. One
is a part of the Hyperspectral Digital Imagery Collection Ex-
periment (HYDICE) airborne hyperspectral dataset from the
Washington DC Mall. A total of 192 bands [37] were used,
comprising 300 lines and 200 columns, as shown in Fig. 4(a).
Fig. 4(b) shows the selected pixels which were used as the
ground truth to evaluate the classification result, and Fig. 4(c)
illustrates the reference image classified by the support vector
machine (SVM) method, implemented by ENVI software [38],
as the truth data. As the shift of the classification map was
known, these degraded LRF images could be accurately regis-
tered at the sub-pixel scale, given the scale factor which was
four. The number of LRF images in this experiment was five,
and the shifts of the LRF images were (—0.5, 0), (0.5, 0), (0,
—0.5), (0, 0.5), relative to the base LRF image. The observed
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Fig. 4. The sub-pixel mapping results for the Washington DC dataset. (a) The original hyperspectral image. (b) The ground truth selected manually to evaluate
the classification result. (c) The reference classification map. (d) SASM. (e) SMML. (f) MMSSM-L. (g) MMSSM-TV. (h) MMSSM-BTV.

TABLE 1
THE ACCURACY OF THE CLASSIFICATION METHOD FOR
THE WASHINGTON DC IMAGE

Methods  Class Water Grass Tree Road
Water 3206 0 0 0
Grass 0 2685 20 116
SVM
Tree 0 162 3030 1
Road 0 0 5 1318

PCC =97.12% Kappa =0.961

image was expected to fall into four classes: water, grass, tree
and road. Fig. 4(d), (e) and (f)—(h) illustrates the sub-pixel map-
ping results using SASM, SMMI and the proposed methods,
respectively.

To estimate the error introduced by the classification method,
many pixels were manually selected as the ground truth, as
Fig. 4(b) illustrates. In this paper, the reference classification
map was obtained by classifying the original remotely sensed
image with SVM, and the accuracy of SVM is shown in Table I.
The results show that misclassification occurs between grass
and tree, owing to the spectral proximity. It also occurs between
grass and road, and these kinds of misclassification may occur
in the following sub-pixel mapping experiments. However, this
classification map can be used as a reference image for sub-pixel
mapping, with a Kappa coefficient of 0.961.

Another image used is a part of a remote sensing image col-
lected with an airborne imaging spectrometer (PHI) from the
Xiaqiao test site. A total of 80 bands of the PHI image (160
* 160 pixels) were utilized, with a spectral range of 440-854
nm. The LRF image sequence was obtained as described for
the Washington DC dataset. The scale factor was set as four,
the number of LRF images was five and the shifts[0] of the
LRF images were (—0.5, 0), (0.5, 0), (0, —0.5), (0, 0.5), rela-
tive to the base LRF image in this experiment. Fig. 5(a) shows
the original PHI hyperspectral image cube; Fig. 5(b) shows the
selected pixels which were used as the ground truth to evaluate
the classification result; and Fig. 5(c) is the reference classifi-
cation map obtained by SVM, in which four major land-cover
classes can be distinguished: road, water, corn, and vegetable.
Fig. 5(d), (e) and (f)—(h) illustrates the sub-pixel mapping results
using SASM, SMMI and the proposed methods, respectively.

The classification accuracies are listed in Table II. As this
image was not particularly complex, so that the distinct differ-
ences between classes can be observed, along with the impact of
the selection of the ground truth, SVM can be seen to be highly
accurate, and the result was considered to be suitable for the ex-
periments with sub-pixel mapping.

The last image used was the AVIRIS data set. Seventeen land
cover classes were considered for classification. The original
image is composed of 136 * 136 pixels, and the ground truth
data was used as the reference data. The LRF image sequence
was obtained as described in the Washington DC dataset ex-
periment. The scale factor was set as four, the number of LRF
images was five and the shifts[0] of the LRF images were



586 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 2, APRIL 2013

- Road

Water - Corn

Vegetable

Fig. 5. The sub-pixel mapping results for the Xiaqiao dataset. (a) The original hyperspectral image. (b) The ground truth selected manually to evaluate the clas-
sification result. (¢) The reference classification map. (d) SASM. (e) SMML. (f) MMSSM-L. (g) MMSSM-TV. (h) MMSSM-BTV.
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Fig. 6. The sub-pixel mapping results for the AVIRIS Indian Pines dataset. (a) The original hyperspectral image. (b) The ground truth data as the reference
classification map. (¢) SASM. (d) SMML. (¢) MMSSM-L. (f) MMSSM-TV. (g) MMSSM-BTV.

TABLE 11
THE ACCURACY OF THE CLASSIFICATION METHOD FOR THE XIAQIAO IMAGE

Methods Class Road Water Corn Vegetable
Road 701 0 0 0
Water 0 154 0 0
SVM
Corn 0 4 1260 7
Vegetable 1 0 0 512

PCC =99.54% Kappa=0.993

(—=0.5,0), (0.5, 0), (0, —0.5), (0, 0.5), relative to the base LRF
image in this experiment. Fig. 6(a) shows the original AVIRIS

hyperspectral image cube; Fig. 6(b) shows the ground truth
data in which 17 major land-cover classes can be distinguished.
Fig. 6(c), (d) and (e)—(g) illustrate the sub-pixel mapping results
using SASM, SMMI and three proposed methods, respectively.

As shown in Figs. 4-6, a visual comparison of the results
suggests that the proposed method is successful in utilizing the
complementary information of multiple images (which have
sub-pixel shifts) to implement the task of sub-pixel mapping. In
particular, some tiny features, such as the narrow path in the top
left of the classification map for the Washington DC dataset,
are not easily reconstructed using SASM, due to insufficient
information. For the Xiaqiao image, the linear feature in the
vegetable class can’t be reconstructed well. For the AVIRIS
image, some lines were over-smoothed in the result of SMMIL.
However, the proposed methods perform better by integrating
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®

- Withered vegetable - Fresh vegetable- Background

Fig. 7. The sub-pixel mapping results for the Nuance hyperspectral dataset. (a) The base LR hyperspectral image obtained by the Nuance NIR imaging spec-
trometer. (b) The HR color image obtained by a high-resolution digital camera, which was used as the reference data. (c) The ground truth selected manually to
evaluate the classification result. (d) The classification result of (b) with SVM. (e) SASM. (f) SMML. (g) MMSSM-L. (h) MMSSM-TV. (i) MMSSM-BTV.

multiple images, which provides more information about the
distribution of the sub-pixels.

The quantitative indices lead to the same conclusion as the
visual assessment. The accuracy of the different methods for the
three simulated images is shown in Table III-V, in which the
confusion matrix for the AVIRIS image was not given owing
to the excessive classes. Generally speaking, the MAP-based
multiple shifted images sub-pixel mapping (MMSSM) method
shows a great improvement when compared with the traditional
single image based sub-pixel mapping method, SASM, re-
gardless of which prior model is used. For the Washington DC
dataset, as shown in Table III, the MMSSM methods produce
better results than the other two methods for all classes, espe-
cially the road class, as it was mainly confused by grass and
tree because of the geographic proximity. Due to the comple-
mentary information of multiple shifted images being utilized
to improve the accuracy of sub-pixel mapping, MMSSM ex-
hibits excellent performance, compared with SASM. Generally
speaking, MMSSM with the Laplacian prior (MMSSM-L) has
the highest accuracy, and it improves the Kappa’ coefficient

from 0.643 and 0.781 to 0.783, when compared with SASM
and SMMI, a gain of 0.181 and 0.002, respectively. The reason
for this is that the Laplacian prior denotes the high-pass op-
eration with the constraint that the solution is smooth, which
satisfies the spatial dependence assumption. The performance
of MMSSM-TV is similar to MMSSM-L, owing to its ability
to preserve the edges and detailed information in images, while
MMSSM-BTV obtains the worst result, compared with the
other two priors, because of its various parameters. Similarly,
the same conclusion can be drawn for the Xiaqiao dataset.
MMSSM with the Laplacian prior (MMSSM-L) and the TV
prior (MMSSM-TV) obtain an approximate accuracy, and their
accuracy is higher than that of MMSSM-BTV. As Table IV
shows, the serious confusion which happens between grass and
road was decreased greatly by MMSSM, which incorporates
more of the information in multiple shifted images to help
the solution of sub-pixel mapping. For the AVIRIS image,
MMSSM-L obtains the highest accuracy as experiments of the
other two images and a gain of 0.112 and 0.021 for Kappa’ can
be achieved comparing with SASM and SMMI respectively.
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TABLE 111
THE CONFUSION MATRIX STATISTICS (%) FOR THE WASHINGTON DC DATASET

Methods Class Water Grass Tree Road
Water 96.07 0.06 0.50 2.75
Grass 0.12 86.05 9.22 10.80
SASM
Tree 0.99 9.16 85.99 12.34
Road 2.82 4.73 4.29 74.10
Water 97.67 0.48 0.85 2.07
Grass 0.03 90.06 4.81 3.97
SMMI
Tree 0.90 7.33 92.15 8.54
Road 1.41 2.13 2.20 85.42
Water 97.12 0.03 0.28 2.29
Grass 0.02 91.87 5.75 5.37
MMSSM-L
Tree 0.63 5.78 91.21 7.67
Road 2.24 2.32 2.77 84.67
Water 97.19 0.01 0.28 2.25
Grass 0.03 91.83 5.76 542
MMSSM-TV
Tree 0.50 5.85 91.18 7.70
Road 2.27 2.31 2.78 84.63
Water 96.99 0.01 0.32 2.36
Grass 0.04 91.02 6.15 6.44
MMSSM-BTV
Tree 0.70 6.23 90.32 8.74
Road 2.26 2.74 321 82.45

According to the statistical accuracy, the MMSSM methods
exhibit higher sub-pixel mapping accuracy than the traditional
method which is based on a single image. Generally speaking,
the performance of MMSSM methods is similar to the other
multiple shifted images based method (SMMI) for both simu-
lated images. However, the method with BTV prior is unsatis-
factory owing to its various parameters. For the other two priors,
the performance is slightly better than SMMI.

B. Experiment 2-Real Hyperspectral Image

To evaluate the application of sub-pixel mapping in practice,
areal experiment was implemented by acquiring LR hyperspec-
tral image sequences and a HR color image for the same area, si-
multaneously. The LR hyperspectral image sequences (50 * 50
pixels) used in this experiment were collected using the Nuance
NIR imaging spectrometer. The acquired hyperspectral images
have 46 bands, with spectral ranges from 650-1100 nm, and a
10 nm spectral interval. The HR color image (150 x 150) was
obtained by a digital camera for the same scene. The scale factor

TABLE IV
THE CONFUSION MATRIX STATISTICS (%) FOR THE XIAQIAO DATASET

Methods Class Road Water Corn  Vegetable
Road 95.88 0.14 0.01 1.21
Water 0.05 72.43 0.68 1.43
SASM
Corn 0.00 13.65 96.51 7.65
Vegetable 4.07 13.78 2.81 89.71
Road 96.33 1.46 0.11 1.01
Water 0.00 85.26 0.25 0.34
SMMI
Corn 0.00 8.61 97.79 2.30
Vegetable 3.67 4.67 1.84 96.36
Road 98.25 0.27 0.00 0.49
Water 0.05 85.68 0.43 0.52
MMSSM-L
Corn 0.00 10.81 98.29 3.26
Vegetable 1.69 3.24 1.28 95.72
Road 98.20 0.27 0.00 0.51
Water 0.05 85.41 0.43 0.56
MMSSM-TV
Corn 0.00 10.54 98.29 3.29
Vegetable 1.75 3.78 1.28 95.64
Road 97.73 0.41 0.00 0.64
Water 0.11 83.11 0.49 0.65
MMSSM-BTV
Corn 0.00 11.89 98.00 3.91
Vegetable 2.17 4.59 1.51 94.80

was three, and the number of LRF images was four in this ex-
periment. One of the LR hyperspectral images was selected as
the base image, and the registration of the base image and HR
image was implemented by ENVI software. Then, all the LR
hyperspectral images were unmixed to obtain the LRF images.
The shifts of the other LRF images and the base LRF image
were calculated with method proposed in [32] as previously de-
scribed, and were (0.31, 0.13), (0.06, 0.15) and (—0.20, 0.56)
respectively. The reference classification map was obtained by
classifying the HR color image by SVM. Fig. 7(a)—(d) illus-
trates the base LR hyperspectral image, HR color image, ground
truth, and the HR classification map, respectively. In this exper-
iment, a new spectral unmixing method was utilized to obtain
the LRF images, as described in [39]. As in [39], probabilistic
support vector machine (P-SVM) was first utilized to determine
if a pixel was pure by comparing the probability value with a
chosen threshold. For those pixels with low probabilistic out-
puts, they were considered to be mixed pixels, and the fully con-
strained least squares (FCLS) method was applied to obtain the
abundance.
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TABLE V
THE ACCURACY OF SUB-PIXEL MAPPING IN THE SIMULATED EXPERIMENTS

Single image based
sub-pixel mapping

Multiple shifted images based sub-pixel mapping

Accuracy
MMSSM MMSSM MMSSM
SASM SMMI

-L TV -BTV
PCC 85.85% 91.25% 91.41% 91.39% 90.46%

Washington Kappa 0.799 0.876 0.878 0.878 0.865
DC pCC’ 75.83% 85.13% 85.32% 85.29% 83.70%

Kappa’ 0.643 0.781 0.783 0.783 0.759
PCC 94.10% 96.96% 97.29% 97.26% 96.76%

Kappa 0.884 0.941 0.947 0.946 0.936

Xiaqiao

PCC’ 82.70% 91.36% 92.07% 91.98% 90.51%

Kappa’ 0.721 0.859 0.872 0.870 0.847
PCC 93.89% 96.57% 97.40% 97.25% 96.30%

Kappa 0.919 0.955 0.965 0.963 0.951

Indian Pines

PCC’ 84.26% 91.64% 93.30% 92.93% 90.46%

Kappa’ 0.804 0.895 0.916 0912 0.881

TABLE VI image. Compared with the reference classification map, the re-

THE ACCURACY OF THE CLASSIFICATION METHOD FOR THE NUANCE IMAGE

Withered Fresh
Methods Class fHere es Background
vegetable vegetable
Withered
2012 0 0
vegetable
svm  fresh 1 731 2
vegetable
Background 0 25 1087

PCC =99.27% Kappa = 0.988

After the LRF images were obtained, the proposed method
was used to perform the task of sub-pixel mapping. Three major
land-cover classes can be distinguished in this experiment: with-
ered vegetable, fresh vegetable, and the black paper, which was
used as the background. Fig. 7(e), (f) and (g)—(i) illustrates the
sub-pixel mapping results using SASM, SMMI, and the pro-
posed method, respectively.

The classification accuracies are listed in Table VI. The re-
sults show that misclassification occurs between fresh vegetable
and the background, owing to the geographic proximity. With
an accuracy of 0.988, this classification result can be used as the
reference data in this experiment.

Unlike the simulated experiments, more error sources were
introduced in the real experiment, including the classification
error of the HR color image, the unmixing error of the LR hy-
perspectral images, the error of the sub-pixel mapping method,
the registration errors between the LRF images, and the registra-
tion error of the base LR hyperspectral image and the HR color

sults of SASM are seriously affected by the error of spectral
unmixing, while that of the proposed method is more smooth,
due to the integration of the information of multiple shifted im-
ages. The proposed method can provide a better visual result;
however, it is sensitive to spectral unmixing and the accuracy
of registration between LRF images, as some details may be
eliminated due to the unmixing error and excessive smoothing.
There is a trade-off between smoothing and detail preservation,
in that smoothing can restrain the error of spectral unmixing
while eliminating the potential tiny features.

The sub-pixel mapping accuracies are listed in Tables VII
and VIII to evaluate the effectiveness of the proposed method.
Due to the inaccuracy of spectral unmixing, only PCC and the
Kappa coefficient were considered in the real experiment. Gains
0f 5.56%, 5.54% and 5.09% for PCC over SASM were obtained
for the proposed method, with the different priors, respectively.
MMSSM-L obtained the best accuracy, and MMSSM-BTYV had
the worst performance, for the same reasons as the simulated
experiment. The confusion matrix in Table VII reveals that the
MMSSM methods have a better result than SASM in all classes,
and the greatest confusion is between background and fresh veg-
etation, because they are seriously mixed in this image. Unlike
the simulated images, the SMMI performs poor when it comes
to real experiment, the accuracy of which is even worse than
SASM because it’s sensitive to the accuracy of image registra-
tion. With accurate shifts, the SMMI can obtain approximate
accuracy with proposed method as simulated experiments illus-
trate. However, the proposed method is more robust when the
image registration parameters are not accurate. The accuracies
indicate that the proposed method is an effective way to improve
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TABLE VII
THE CONFUSION MATRIX STATISTICS (%) FOR THE NUANCE DATASET
Withered Fresh
Methods Class vegetable vegetable Background
Withered vegetable 89.78 16.36 5.62
SASM Fresh vegetable 6.62 66.82 35.38
Background 3.59 16.83 59.00
Withered vegetable 71.52 0.96 0.20
SMMI Fresh vegetable 10.26 38.84 3.46
Background 18.22 60.19 96.34
Withered vegetable 92.07 10.86 1.15
MMSSM-L Fresh vegetable 5.23 70.22 27.12
Background 2.70 18.92 71.73
Withered vegetable 91.57 10.55 1.10
MMSSM-TV Fresh vegetable 5.57 70.71 27.49
Background 2.87 18.73 71.42
Withered vegetable 90.70 10.38 1.06
MMSSM-BTV Fresh vegetable 6.09 70.10 27.24
Background 3.21 19.52 71.70
TABLE VIII
THE ACCURACY OF SUB-PIXEL MAPPING IN THE REAL EXPERIMENT
Single image based . . . . .
. . Multiple shifted images based sub-pixel mapping
A sub-pixel mapping
ccuracy
SASM SMMI MMSSM-L MMSSM-TV MMSSM-BTV
PCC 71.60% 63.99% 77.16% 77.14% 76.69%
Kappa 0.566 0.479 0.653 0.652 0.645

the performance of sub-pixel mapping, compared with the two
other methods.

C. Parameter Analysis

1) Impact of the Regularization Parameter: In the MAP
model presented in (10), the regularization parameter A plays
a very important role, in that it controls the relative contribution
between the data fidelity and prior item. If the value selected
is too small, the noise will not be well suppressed; inversely, if
the value selected is too large, the result will be blurred [33].
To show the robustness of the proposed method with regard to
the regularization parameter A, we plotted the curve of the PCC
value with different values of the parameter A for the three priors
in the simulated Washington DC dataset and the Nuance dataset,
as shown in Fig. 8(a), (b). Fig. 8 shows that the performance of
the proposed method with different priors is not consistent for
the same regularization parameter. The Laplacian prior model
can obtain the best accuracy when the value of A is small; how-

ever, the accuracy decreases greatly if A exceeds a certain nu-
merical value. For the TV and BTV prior models, the change in
accuracy is slower than the Laplacian prior model when A in-
creases. That is, they are more stable than the Laplacian prior
model. Generally speaking, the change of A has a very large
effect on the results of the Laplacian prior model, although it
obtains the best accuracy. The TV and BTV prior models are
robust with regard to changes of the parameter A, and the PCC
value remains little changed when A is set to be a large value.
In addition, the optimal accuracy of the TV prior is more or less
the same as that of the Laplacian prior, while that of BTV is a
little lower than the other two priors.

2) Impact of Image Registration: The image registration is
very important procedure in this proposed method. For the real
experiment, the approximate shifts of LRF images were calcu-
lated by method proposed in [32]. However, the impact of im-
ager registration should be discussed because different combi-
nations of shifts may have a great influence on the sub-pixel



XU et al.: SUB-PIXEL MAPPING BASED ON A MAP MODEL WITH MULTIPLE SHIFTED HYPERSPECTRAL IMAGERY

m Laplacian
- o TV
0.92 A BTV
1 ll.oooo..
0.90
i AdA, L
0.88 AAA
4 A ¢
0.86 | A °
5 j A
L ]
O 0.84
a _ = ..
0.82 ‘A %
) - °,
0.80 A, %
p 'A
Ax e
0.78 - A\
| T ———— T YT Ty ]
0.76 4
T T T T T 1
1E-4 1E-3 0.01 0.1 05 1 2
Lamda

591

® Laplacian
e TV
0.80 A BTV
LI TY
0.75 —_..' m:::“ %,
o A [ ]
0.70 A o
A @9
0.65 1
j A
Q 060
8 A
0.55 4 4
A
0.50 = -
0.45 o
0.40 4 L™ EEEEE ®E =®
0.35 T T T T 1

T T T T T T T T 1T
1E-4 1E-3 0.01 01 051 2 5 10 20 3040506070 80 90

Fig. 8. A comparison of the performance of the proposed method with different priors and regularization parameters for both experiments. (a) Simulated experi-
ment with the Washington DC dataset. (b) Real experiment with the Nuance dataset.
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Fig. 9. A comparison of the performance of the proposed method given different registration errors for the simulated experiments. (a) The result with the Wash-

ington DC dataset. (b) The result with the Xiaqiao image.

mapping result. In this section, two simulated images were used
to evaluate the impact of registration error. The accurate com-
bination of shifts used in this experiment is (—0.5, 0), (0.5, 0),
(0, —0.5), (0, 0.5) for the four auxiliary images. To evaluate the
impact of different combinations of shifts, the registration error
was used to adjust the shifts. If the registration error is equal
to 0.1, the combination of shifts used is (—0.4, 0.1), (0.6, 0.1),
(0.1,—0.4),(0.1, 0.6). Fig. 9 illustrates the accuracy of proposed
method with Laplacian prior given different registration errors
for both simulated images. When the combination of shifts is
accurate, which means the registration error is 0, the proposed
method obtains the highest accuracy. As the absolute value of
registration error improves, the accuracy decreases greatly.

V. EXPERIMENTS AND ANALYSIS

A sub-pixel mapping framework based on a MAP model with
multiple shifted hyperspectral images, namely MMSSM, is pro-
posed to utilize the complementary information in images which
have sub-pixel shifts, in order to improve the performance of
sub-pixel mapping. Traditional sub-pixel mapping methods are
based on a single image, which is inadequate because of the

lack of information. A type of auxiliary data that can provide
more details at the sub-pixel level is multiple shifted images ac-
quired for the same area, with sub-pixel shifts. MMSSM utilizes
a MAP model, which has the ability to regularize the ill-posed
problem by adding prior information in order to convert the data
to a better sub-pixel mapping result. In MMSSM, LRF images
for all the low-resolution hyperspectral images are first obtained
by spectral unmixing, and the sub-pixel shifts between the LRF
images are precisely calculated. Based on the LRF images, the
MAP model incorporates the image information of the same
land-cover class to obtain a resolution-enhanced map. The spa-
tial distribution of the different classes can be determined by in-
tegrating these resolution-enhanced maps. Three prior models
(Laplacian, TV and BTV), which are used in MMSSM to regu-
larize the sub-pixel mapping problem, were introduced to verify
the performance of the proposed method for sub-pixel mapping.
Compared with traditional single image based method, experi-
mental results using both synthetic and real multiple shifted hy-
perspectral images indicated that MMSSM is an efficient sub-
pixel mapping technique for improving accuracy and visual as-
sessment. An analysis of the A parameter and the image regis-
tration is also provided. Future research will focus on further
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improvements of the proposed techniques, such as the adaptive
selection of the regularization parameter.

ACKNOWLEDGMENT

The authors would like to thank the editor, associate editor

and anonymous reviewers for their helpful comments and
suggestions, Dr. F. Ling of the Institute of Geodesy and Geo-
physics, Chinese Academy of Sciences for providing the code
of their algorithm, and also the research group supervised by
Prof. D. Landgrebe, Purdue University, West Lafayette, IN, for
providing the free downloads of the AVIRIS Image.

REFERENCES

[1] G. M. Foody, “Hard and soft classifications by a neural network with a
non-exhaustively defined set of classes,” Int. J. Remote Sens., vol. 23,
no. 18, pp. 3853-3864, Jan. 2002.

L. Zhang, B. Wu, B. Huang, and P. Li, “Nonlinear estimation of

subpixel proportion via kernel least square regression,” /nt. J. Remote

Sens., vol. 28, no. 18, pp. 41574172, Sept. 2007.

[3] P. M. Atkinson, “Mapping sub-pixel boundaries from remotely sensed

images,” in Innovations in GISIV. London, U.K.: Taylor and Francis,

1997, ch. 12, pp. 166-180.

A.J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, “Super-

resolution target identification from remotely sensed images using a

Hopfield neural network,” IEEE Trans. Geosci. Remote Sens., vol. 39,

no. 4, pp. 781-796, Apr. 2001.

A.J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, “Multiple-

class land-cover mapping at the sub-pixel scale using a Hopfield neural

network,” Int. J. Appl. Earth Obs. Geoinf., vol. 3, no. 2, pp. 184-190,

2001.

A.]J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, “Super-res-

olution land cover pattern prediction using a Hopfield neural network,”

Remote Sens. Environ., vol. 79, no. 1, pp. 1-14, Jan. 2002.

Y. Su, G. Foody, A. Muad, and K. Cheng, “Combining Hopfield

neural network and contouring methods to enhance super-resolution

mapping,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.

(JSTARS), vol. 5, no. 5, 2012.

K. C. Mertens, L. P. C. Verbeke, T. Westra, and R. R. D. Wulf,

“Sub-pixel mapping and sub-pixel sharpening using neural network

predicted wavelet coefficients,” Remote Sens. Environ., vol. 91, no. 2,

pp. 225-236, May 2004.

L. Zhang, K. Wu, Y. Zhong, and P. Li, “A new sub-pixel mapping

algorithm based on a BP neural network with an observation model,”

Neurocomputing, vol. 71, no. 10-12, pp. 20462054, Jun. 2008.

[10] J. Verhoeye and R. R. D. Wulf, “Land cover mapping at sub-pixel scales
using linear optimization techniques,” Remote Sens. Environ., vol. 79,
no. 1, pp. 96104, Jan. 2002.

[11] K. C. Mertens, B. D. Baets, L. P. C. Verbeke, and R. R. D. Wulf, “A
sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction
models,” Int. J. Remote Sens., vol. 27, no. 15, pp. 3293-3310, Aug.
2006.

[12] P. M. Atkinson, “Sub-pixel target mapping from soft-classified, re-
motely sensed imagery,” Photogramm. Eng. Remote Sens., vol. 71, no.
7, pp. 839-846, Jul. 2005.

[13] K. C. Mertens, L. P. C. Verbeke, E. 1. Ducheyne, and R. R. D. Wulf,
“Using genetic algorithms in sub-pixel mapping,” Int. J. Remote Sens.,
vol. 24, no. 21, pp. 4241-4247, Nov. 2003.

[14] Y. Zhong, L. Zhang, P. Li, and H. Shen, “A sub-pixel mapping algo-
rithm based on artificial immune systems for remote sensing imagery,”
in Geoscience and Remote Sensing Symp., 2009 IEEE Int., IGARSS
2009, pp. 111-1007-111-1010.

[15] T. Kasetkasem, M. K. Arora, and P. K. Varshney, “Super-resolution
land cover mapping using a Markov random field based approach,”
Remote Sens. Environ., vol. 96, no. 3/4, pp. 302-314, Jun. 2005.

[16] V. A. Tolpekin and A. Stein, “Quantification of the effects of land-
cover-class spectral separability on the accuracy of markov-random-
field-based superresolution Mapping,” IEEE Trans. Geosci. Remote
Sens., vol. 47, no. 9, pp. 32833297, Sept. 2009.

[2

—

[4

—_

[5

[k}

[6

—_

[7

—

[8

[t}

[9

—

[17] Y. Shao and R. S. Lunetta, “Sub-pixel mapping of tree canopy, imper-
vious surfaces, and cropland in the laurentian great lakes basin using
MODIS time-series data,” IEEE J. Sel. Topics Appl. Earth Observ. Re-
mote Sens. (JSTARS), vol. 4, no. 2, Jun. 2011.

[18] Q. M. Nguyen, P. M. Atkinson, and H. G. Lewis, “Super resolution
mapping using a Hopfield neural network with fused images,” IEEE
Trans. Geosci. Remote Sens., vol. 44, pp. 736—749, Mar. 2006.

[19] F. Ling, Y. Du, F. Xiao, H. Xue, and S. Wu, “Super-resolution
land-cover mapping using multiple sub-pixel shifted remotely sensed
images,” Int. J. Remote Sens., vol. 31, no. 19, pp. 5023-5040, Oct.
2010.

[20] Q. M. Nguyen, P. M. Atkinson, and H. G. Lewis, “Super-resolution
mapping using Hopfield neural network with LIDAR data,” IEEE
Geosci. Remote Sens. Lett., vol. 2, no. 3, pp. 366370, Jul. 2005.

[21] Q. M. Nguyen, P. M. Atkinson, and H. G. Lewis, “Super-resolution
mapping using Hopfield Neural Network with panchromatic imagery,”
Int. J. Remote Sens., vol. 32, no. 21, pp. 6149-617, Jul. 2011.

[22] T.S. Huang and R. Y. Tsai, “Multi-frame image restoration and regis-
tration,” Adv. Comput. Vis. Image Process., vol. 1, pp. 317-339, 1984.

[23] S.Park, M. Park, and M. G. Kang, “Super-resolution image reconstruc-
tion, a technical overview,” IEEE Signal Process. Mag., vol. 20, no. 5,
pp. 21-36, May 2003.

[24] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution
frames from video sequences,” [EEE Trans. Image Process., vol. 5,
no. 6, pp. 9961011, 1996.

[25] L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman, “Bayesian
image super-resolution, continued,” Adv. Neur. In., vol. 19, pp.
1089-1096, 2006.

[26] J.Ma,]J. C. C. Wai, and F. Canters, “An operational superresolution ap-
proach for multi-temporal and multi-angle remotely sensed imagery,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol.
5, no. 1, pp. 110-124, Feb. 2012.

[27] E. S. Lee and M. G. Kang, “Regularized adaptive high-resolution
image reconstruction considering inaccurate subpixel registration,”
IEEE Trans. Image Process., vol. 12, no. 7, pp. 826-837, Jul. 2003.

[28] M. Ng, H. Shen, E. Lam, and L. Zhang, “A total variation regu-
larization based super resolution reconstruction algorithm for digital
video,” EURASIP J. Adv. Signal Process., pp. 1-16, 2007, Article
ID 74585.

[29] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super-resolution,” IEEE Trans. Image Process., vol. 13, no.
10, pp. 1327-1344, 2004.

[30] P. Fisher, “The pixel: A snare and a delusion,” Int. J. Remote Sens.,
vol. 18, no. 3, pp. 679-685, Feb. 1997.

[31] S. Borman and R. L. Stevenson, Spatial Resolution Enhancement of
Low-Resolution Image Sequences. A Comprehensive Review With Di-
rections for Future Research Lab. Image and Signal Analysis, Univer-
sity of Notre Dame, 1998, Tech. Rep..

[32] L. Zhang, H. Zhang, H. Shen, and P. Li, “A super-resolution recon-
struction algorithm for surveillance images,” Signal Process., vol. 90,
no. 3, pp. 848-859, 2010.

[33] Q. Yuan, L. Zhang, H. Shen, and P. Li, “Adaptive multiple-frame image
super-resolution based on U-curve,” [EEE Trans. Image Process., vol.
19, no. 12, pp. 3157-3170, Dec. 2010.

[34] A. Kanemura, S. Maeda, and S. Ishii, “Superresolution with com-
pound Markov random fields via the variational EM algorithm,”
Neural Netw., vol. 22, no. 7, pp. 1025-1034, 2009.

[35] Y. Li, D. Dai, and L. Shen, “Multiframe super-resolution reconstruc-
tion using sparse directional regularization,” IEEE Trans. Circuits Syst.
Video Technol., vol. 20, no. 7, pp. 945-956, 2010.

[36] H. Shen, L. Zhang, B. Huang, and P. Li, “A MAP approach for joint
motion estimation, segmentation and super-resolution,” /EEE Trans.
Image Process., vol. 16, no. 2, pp. 479-490, Feb. 2007.

[37] D. Landgrebe, Signal Theory Methods in Multispectral Remote
Sensing. , New Jersey, USA: Wiley, 2003.

[38] American ITT Visual Information Solutions Company, ENVI Online
Tutorials [EB/OL] [Online]. Available: http://www.ittvis.com/Prod-
uctServices/ENVI.aspx

[39] A. Villa, J. Chanussot, J. A. Benediktsson, and C. Jutten, “Spectral
unmixing for the classification of hyperspectral images at a finer spa-
tial resolution,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp.
521-533, Jun. 2011.



XU et al.: SUB-PIXEL MAPPING BASED ON A MAP MODEL WITH MULTIPLE SHIFTED HYPERSPECTRAL IMAGERY 593

Xiong Xu received the B.S. degree in photogram-
metry from Wuhan University, Wuhan, China,
in 2008, where he is currently working toward
the Ph.D. degree in photogrammetry and remote
sensing in the State Key Laboratory of Information
Engineering in Surveying, Mapping, and Remote
Sensing at Wuhan University, Wuhan.

His research interests include multi- and
hyper-spectral image processing, artificial neural
network, and pattern recognition.

Yanfei Zhong (M’11) received the B.S. degree in in-
formation engineering and the Ph.D. degree in pho-
togrammetry and remote sensing from Wuhan Uni-
versity, China, in 2002 and 2007, respectively.

He has been with the State Key Laboratory of
Information Engineering in Surveying, Mapping
and Remote Sensing, Wuhan University since 2007
and is currently a Professor. His research interests
include multi- and hyperspectral remote sensing
image processing, artificial intelligence, and pattern
recognition. He has published more than ten peer-re-
viewed articles in international journals such as IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING and IEEE TRANSACTIONS ON SYSTEMS,
MAN AND CYBERNETICS, PART B.

Dr. Zhong was the recipient of the National Excellent Doctoral Dissertation
Award of China (2009) and New Century Excellent Talents in University of
China (2009). He was a Referee of IEEE TRANSACTIONS ON SYSTEMS, MAN
AND CYBERNETICS, PART B, TEEE JOURNAL OF SELECTED TOPICS IN APPLIED
EARTH OBSERVATIONS AND REMOTE SENSING, and Pattern Recognition.

Liangpei Zhang (M’06-SM’08) received the B.S.
degree in physics from Hunan Normal University,
ChangSha, China, in 1982, the M.S. degree in optics
from the Xi’an Institute of Optics and Precision
Mechanics of Chinese Academy of Sciences, Xi’an,
China, in 1988, and the Ph.D. degree in Photogram-
metry and Remote Sensing from Wuhan University,
Wuhan, China, in 1998.

He is currently with the State Key Laboratory of
Information Engineering in Surveying, Mapping and
Remote Sensing, Wuhan University, as the head of
the Remote Sensing Division. He is also a “Chang-Jiang Scholar” Chair Pro-
fessor appointed by the Ministry of Education, China. He is currently the Prin-
cipal Scientist for the China State Key Basic Research Project (2011-2016)
appointed by the Ministry of National Science and Technology of China to
lead the remote sensing program in China. He is an Executive Member (Board
of Governor) of the China National Committee of International Geosphere-
Biosphere Programme. He also serves as an Associate Editor of International
Journal of Ambient Computing and Intelligence, International Journal of Image
and Graphics, International Journal of Digital Multimedia Broadcasting, Journal
of Geo-spatial Information Science, and the Journal of Remote Sensing. He has
more than 260 research papers and is the holder of five patents. His research
interests include hyperspectral remote sensing, high resolution remote sensing,
image processing and artificial intelligence.

Dr. Zhang is a Fellow of the Institution of Electrical Engineers, an executive
Member for the China Society of Image and Graphics, and others. He regu-
larly serves as a Cochair of the series SPIE Conferences on Multispectral Image
Processing and Pattern Recognition, Conference on Asia Remote Sensing, and
many other conferences. He edits several conference proceedings, issues, and
the Geoinformatics Symposiums.

Hongyan Zhang received the B.S. degree in geo-
graphic information system and the Ph.D. degree in
photogrammetry and remote sensing from Wuhan
University, Wuhan, China, in 2005 and 2010,
respectively.

Since 2010, he has been a Lecturer with the State
Key Laboratory of Information Engineering in Sur-
veying, Mapping, and Remote Sensing, Wuhan Uni-
versity. His current research interests focus on image
reconstruction and remote sensing image processing.



